Double ionization of H2 by intense attosecond laser pulses

نویسندگان

  • Teck-Ghee Lee
  • M S Pindzola
  • F Robicheaux
چکیده

We present calculations of the double ionization of H2 induced by an intense attosecond laser pulse at a photon energy of 40 eV using the time-dependent close-coupling method within the fixed nuclei approximation. We focus on two-photon absorption processes and examine how the response of the ejected electrons, in particular the singleand the double-energy differential probabilities, is affected by linear and circular polarizations at laser-field intensities ranging from 1015 W cm−2 to 1016 W cm−2. In general, we find that for both linearly and circularly polarized pulses, sequential peaks and non-sequential wells that appear in both the singleand double-energy differential probabilities are akin to the analogous two-electron photoemission processes in the helium atom driven by intense attosecond pulses. In addition, for the case of a linearly polarized pulse, a clear signature of the sequential double-electron above the threshold ionization process can be seen in these spectra. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of an Intense Isolated Attosecond Pulse by a Chirped Two-Color Laser Field

We investigate theoretically the high-order harmonic spectrum extension and numerical generation of an intense isolated attosecond pulse from He+ ion irradiated by a two-color laser field. Our simulation results show that the chirp of the fundamental field can control HHG cutoff position. Also, these results show that the envelope forms of two fields are important factors for controlling the re...

متن کامل

Double ionization of helium by intense near-infrared and VUV laser pulses

We investigate the dynamics of double ionization of He atom by an intense near-infrared and an attosecond vacuum ultraviolet (VUV) laser pulse, which are either applied in sequence or at the same time. To this end we solve the time-dependent Schrödinger equation for a two-electron model atom interacting with the two fields. We compare the double-ionization yields and probability density distrib...

متن کامل

Generation of High Order Harmonics from H2+ Molecule Ion by Using Homogenous and Inhomogeneous Laser Fields

We solved one dimensional Schrodinger equation in a H2+ molecular environment by using 3 femtosecond homogeneous and nonhomogeneous laser fields. In homogeneous case, we found out that larger inter nuclear distances result in earlier ionization and also more instability in the wave packet. We deducted that the more the instability is, the more modulated the power spectrum will be. So, by choosi...

متن کامل

Rescattering double ionization of D2 and H2 by intense laser pulses.

We have measured momentum spectra and branching ratios of charged ionic fragments emitted in the double ionization of D2 (and H2) molecules by short intense laser pulses. We find high-energy coincident D+ (and H+) ion pairs with kinetic energy releases between 8 and 19 eV which appear for linearly polarized light but are absent for circularly polarized light. The dependence on the polarization,...

متن کامل

Dependence of Tunneling Ionization and Harmonic Generation on the Structure of Molecules by Short Intense Laser Pulses

We illustrate how the sub-10fs lasers and attosecond XUV pulses can be used to probe the structure of molecules. Experimental results of the alignment dependence of the ionization rates and the high-order harmonic generation yields are shown to reflect the structure of the highest occupied molecular orbital. We also show that the vibrational wave packet of simple molecules can be mapped accurat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010